
Mathematics and Computer Science DivisionArgonne National Laboratory
A

R
G

O
N

NE

NATIONAL LABORA
TO

R
Y

U
N

IVERSITY OF C
HIC

A
G

O

•

•

PREPRINT MCS-P392-1193An Abstract Device De�nition toSupport the Implementation of aHigh-Level Point-to-PointMessage-Passing InterfacebyWilliam GroppEwing LuskMathematics and Computer Science DivisionArgonne National Laboratorygropp@mcs.anl.govlusk@mcs.anl.gov

March 5, 1995

AbstractIn this paper we describe an abstract device interface (ADI) that maybe used to e�ciently implement message-passing systems. This workwas done to provide an implementation of the Message Passing Inter-face (MPI); however, the interface is appropriate for many message-passing systems. The ADI provides for both simple devices and thosecapable of signi�cant processing. We discuss some of the issues in theimplementation and provide a sample implementation for a \device"that is capable of message-passing.1 IntroductionOur goal is to de�ne an abstract device (ADI) on which a high-level message-passing application programmer interface (API) such as MPI can be imple-mented. An important requirement is to support a variety of instantiationsof this device, from low-level FIFO's and streams to high-level libraries suchas IBM's EUI-H, the Intel NX communication library, or portable librarieslike Chameleon, p4, or PVM. Implementations of an API can thus consist al-most entirely of portable code; dependencies on the low-level transport layerare encapsulated inside the implementation of the abstract device. Whatwe have most in mind are low-level devices provided by individual MPP andworkstation network vendors, and so a primary consideration is that thisabstract-device approach not contribute any execution-time overhead to thereal device. A wide variety of possible device protocols are envisioned. Thedesign suggested here attempts to retain
exibility by listing a set of macrosthat are to be de�ned by each side of the interface but invoked by the otherside. In other words, each side provides services to the other.We do not discuss any of the issues related to providing reliable com-munications, bu�er protocols, or the implementation of the API side of theinterface. We assume that the global (or collective) operations are imple-mented with the point-to-point operations, so our ADI has no global oper-ations. This is an area for further development; we expect to add supportfor collective operations in the future.The design of the ADI is made more complex because we wish to allowfor but not require a range of possible enhanced functions of the device.For example, the device may implement its own message-queuing and data-transfer functions. In addition, the speci�c environment in which the deviceoperates can strongly a�ect the choice of implementation, particularly withregard to how data is transferred to and from the user's memory space.For example, if the device code runs in the user's address space, then itcan easily copy data to and from the user's space. If it runs as part of theuser's process (for example, as library routines on top of a simple hardwaredevice), then the `device' and the API can easily communicate, calling eachother to perform services. If, on the other hand, the device is operatingas a separate process and requires a context-switch to exchange data orrequests, then it can be very expensive to switch between processes, and it1

becomes important to minimize the number of such exchanges by providingall information needed with a single call.The original motivation for this work was the challenge of providingan implementation of MPI [?] that was both portable and e�cient. Al-though MPI is a relatively large speci�cation, the device-dependant partsare small. By implementing MPI using the ADI, we could provide code thatcould be shared among many implementations. E�ciency could be obtainedby vendor-speci�c proprietary implementations of the abstract device. Forthis approach to be successful, the semantics of the ADI must not precludemaximally e�cient instantiations using modern message-passing hardware.While this ADI has been designed to provide a portable MPI implementa-tion, there is nothing about this part of the design that is speci�c to theMPI library; this de�nition of an abstract device can be used to implementany high-level message-passing library.To help in understanding our design, it is useful to look at some ab-stract devices for other operations, for example, for graphical display or forprinting. Most graphical displays provide for drawing a single pixel at anarbitrary location; any other graphical function can be built using this sin-gle, elegant primitive. However, high performance graphical displays o�er awide variety of additional functions, ranging from block copy and line draw-ing to 3-d surface shading. One approach for allowing an API (applicationprogrammer interface) to access the full power of the most sophisticatedgraphics devices without sacri�cing portability to less capable devices is tode�ne an abstract device with a rich set of functions, and then provide soft-ware emulations of any functions not implemented by the graphics device.We will use the same approach in de�ning our message-passing ADI.A message passing ADI must provide four sets of functions: specify-ing a message to be sent or received, moving data between the API andthe message-passing hardware, managing queues of pending messages (bothsent and received), and basic information about the execution environment(e.g., how many tasks are there). The ADI will provide all of these func-tions; however, we expect that many message-passing hardware systems willnot provide queue management or elaborate data-transfer abilities. Thesefunctions will be emulated through the use of auxiliary routines that we willde�ne in this paper.In Section 2 we discuss the macro prototypes. An implementation basedon this interface is available by anonymous ftp from info.mcs.anl.gov in`pub/mpi/mpich.tar.Z'. At the end of this document is a complete im-plementation of an abstract device using an existing message-passing sys-tem (Chameleon [?]). In Section 4, we give examples of the execution se-quence that the API and ADI may go through for a few common message-passing operations. Section 5 we discuss some issues in the implementationof the ADI on systems that support operations such as active messages andmessage-passing co-processors. 2

2 The Abstract DeviceIn this section we discuss the operations that the device may perform. Theseare in two categories: functions that the device must be able to perform,and functions that are not required but that a system such as MPI canexploit. In addition, there may be several ways in which an operation, suchas transferring data, can be performed. A device may specify its preference.This section describes all of the operations. We �rst describe the inter-face for sending and receiving messages because this will help introduce theADI and motivate the additional functions such as queue management. Itloosely conforms to the MPI interface; in particular, the terms blocking andnonblocking have the meaning de�ned in the MPI standard [?].2.1 Message-passingA message consists of a message body (the data the user wishes to send orreceive), the length of the message body, a message tag (often called type)used to distinguish between messages, a context-id, and a destination (forsending) or source (for receiving). The context-id may be thought of asadditional bits in the message tag that are reserved to the API; in MPI thecontext-id is used to implement communicators that are used in the imple-mentation of safe libraries. Messages can be received in the API only byexactly matching the context-id, and either matching the tag and source,or specifying that any tag and/or source may be matched, in a messagereceived by the ADI. While the context-id may seem unfamiliar, most exist-ing systems provide at least a single-bit context-id that is used to separateuser from system messages. For example, a message-passing system mayuse a reserved bit to distinguish between point-to-point operations made bythe user and point-to-point operations used by the system to implement acollective operation.In addition, a message may be sent in either blocking or nonblockingform. In the blocking form, the ADI will not return control to the APIuntil the message body is available for re-use. In a send, this means that themessage bu�er has either been delivered or has been transferred into internalmemory. In a receive, it means that the message has been received. Thenonblocking form allows an API to provide the programmer with the abilityto overlap communication with computation. Moreover, The API must askthe ADI about whether the message bu�er is available before reusing it.When sending a message, one of three modes may be used. These are: four, with bu�er-ing, or is theAPI responsiblefor bu�ering?standard, synchronous, and ready. In the synchronous mode, the ADI mustnot return control to the API until the destination begins to receive themessage. In the ready mode, the ADI requires that a matching receive havealready been posted by the ADI at the destination; it is an error (withunde�ned behavior) if the receive has not been posted. The standard modehas no additional requirements. 3

Table 1: Fields in message handles available to the deviceField Meaninghandle_type Type of handle (MPIR_SEND or MPIR_RECV).dest Destination rank (send)source Source rank (receive)tag Tag valuecontext_id Context id valuecompleted Flag for whether communication opperationis completedmode Sending mode (MPIR_STANDARD, MPIR_READY,MPIR_SYNCHRONOUS) (send)dev_shandle Device's send handle (see Section 2.2)dev_rhandle Device's receive handle (see Section 2.3)datatype MPI-style datatype descriptionIt is possible to implement all of these send and receive operations bywith an ADI that provides only one send and one receive, e.g., the nonblock-ing send and nonblocking receive. The synchronous and ready send modesare relatively easily implemented on top of this; a blocking send is just anonblocking send followed by a call to complete that send. This approach,while simplifying the ADI design, can pay a performance penalty that wewish to avoid. We will point out speci�c instances of these penalties below.We point out that while the ADI design contains entries for these di�er-ent operations, the ADI itself can choose an implementation that tradese�ciency for simplicity.In our ADI, a message is speci�ed by a Request structure. The relevantelements of this structure are shown in Table 1. This structure is used bythe API and will contain additional �elds.Note that there are no �elds specifying the location of the data; accessto the message body is discussed separately in Section 2.5. In addition, the�elds dev_shandle and dev_rhandle are provided; these provide a place forthe ADI to store information about the message in the API's data-structure.These are described separately in Sections 2.2 and 2.3.The Request structure is actually a union; if the type is MPIR_SEND, itis a A_SHANDLE and if the type is a MPIR_RECV, it is a A_RHANDLE.The send and receive operations are fundamentally asymmetric. Theasymmetry arises from the fact that sending is always initiated by the APIon behalf of the user, whereas the most important aspects of receiving areinitiated by the ADI, since data may appear there whether the user is pre-pared to accept it or not. We attempt to allow the device great latitude inthe protocol it uses, including bu�ering on either the send or receive side,no bu�ering at all, or a mixed protocol that may depend on the particularmessage being dealt with. We will see this asymmetry when we discuss the4

Table 2: Nonblocking send followed by waitUser Program API ADIMPI_isend A_alloc_sendallocate D_send_handleA_post_send calls devicelayer to start send operation Initiates send operation,possibly callingD_get_totallen andD_get_into_contig totransfer data (Or may justnotify destination thatmessage available)return(User code runs) : : : : : :Interrupt; message sent; callsD_mark_send_completedPosts send completed in MPIdata structuresA_free_send_handle freesdevice's data structures(User code runs)MPI_status MPI data structures showsend completedMPI_wait D_SHANDLE found markedcompletedfree D_SHANDLEreturnmessage queues in Section 2.6.2.2 Sending a messageSending a message from one processor to another is the simplest operation;as we will see, the sending side of this is simpler than the receiving side.Table 2 shows one possible scenario from the point where the user callsa nonblocking send routine (at the top) to when the user completes thenonblocking send.The API part of this process is responsible for setting up the initialrequest and for converting user requests into the correct ADI requests. TheADI is responsible for actually transmitting the message. Note also that theADI and API work together to transfer the actual data; this allows the APIto provide a richer set of data layouts (for example, structures or vectors5

with regular stride) that are not supported by the ADI. Also note that wedon't specify the protocol used by the ADI to actually transfer the message;this allows the ADI to optimize for di�erent cases. The rest of this sectiondiscusses the way in which a send operation is speci�ed to the ADI.The API requests the ADI to send a message by forming a Requeststructure containing the information in Table 1. The API must then initial-ize the ADI's data area in this structure (the dev_shandle). This is donewith the macro A_alloc_send_handle(Request *r). The API's Requeststructure must contain a A_SHANDLE dev_shandle element. The ADI de-�nes A_SHANDLE; typically this is a structure but could be a pointer to astructure or an index into a private memory location.Next, the macro A_set_send_is_nonblocking(Request *r, int flag Should this bepart of the APIRequest?) is called with flag = 1 if the send is nonblocking and flag = 0 otherwise.This should set the appropriate �eld in the ADI's dev_shandle.We are now ready to post the message, that is, to ask the ADI to sendit. This is done with the macro A_post_send(Request *r).. an already com-plete return
aglike post recv?more on semantics of send?When the API requires the send to be completed, it calls the macroA_complete_send(Request *r, Status *s). The ADI does not returnfrom this call until the send has "completed" (note that completed in thestandard or ready mode means only that the message data bu�er is availablefor reuse). Note that while the ADI is handling a A_complete_send, it mustbe prepared to handle incoming messages unrelated to this request. Need commentson fairness, re-quirements thatthe ADI serviceother requestsWhen the API is �nished with a send Request, it must tell the ADI tofree the dev_shandle with the macro A_free_send_handle(Request *r).The API is allowed to use the same Request more than once as long asonly one requested is posted and not completed at any time.2.2.1 Rationale for allocation of ADI handlesThe ADI may prefer that its private data be handled in a special way.The simplest, assuming that the ADI and API share address space, is forthe ADI's information to be incorporated directly into the API Requeststructure. This is shown in Example 1.Example 1:typedef struct { ... } A_SHANDLE;#define A_alloc_send_handle(f)Another option is for the ADI to have the device handle allocated dy-namically with malloc (or some other memory allocator); this is shown inExample 2.Example 2: 6

typedef struct { ... } *A_SHANDLE;#define A_alloc_send_handle(f) \f->dev_shandle=malloc(sizeof(A_SHANDLE)If the ADI wishes to guarantee that the device data is hidden from theAPI, it can instead give the API an index that the ADI will use to access thedata. This is shown in Example 3, where the function A_PRIVATE_SEND()(not part of the ADI de�nition) is used to return an integer index.Example 3:typedef int A_SHANDLE;#define A_alloc_send_handle(f) \f->dev_shandle=A_PRIVATE_SEND()The same approach is used for receive handles.2.3 Receiving a messageReceiving a message is much like sending one (the most important di�erencesare discussed in Section 2.6 on the message queues). The progress of anonblocking receive is shown in Table 3. A comparison with Table 2 showsthat the only signi�cant di�erence is the \check unexpected queue;" thishandles the case of the data having arrived before the user posts the receivefor the message.The API requests the ADI to receive a message by forming a Requeststructure containing the information in Table 1. Note that the modes (e.g.,MPIR_STANDARD) apply only to send requests; a message can be receivedregardless of the mode by which it was sent.1 The API must then initial-ize the ADI's data area in this structure (the dev_rhandle). This is donewith the macro A_alloc_recv_handle(Request *r). The API's Requeststructure must contain a A_RHANDLE dev_rhandle; element. The ADI de-�nes A_RHANDLE; typically this is a structure but could be a pointer to astructure or an index into a private memory location.Next, the macro A_set_recv_is_nonblocking(Request *r, int flag Should this bepart of the APIRequest?) is called with flag = 1 if the receive is nonblocking and flag = 0 otherwise.This should set the appropriate �eld in the ADI's dev_rhandle.We are now ready to post the message, that is, to ask the ADI toreceive it. This is done with the macro A_post_recv(Request *r, int*is_complete).If the receive blocking, this does not return to the API until the messagehas been received. If the receive is nonblocking but the message is already1This choice eliminates some possible optimizations, but it was the choice of MPI andis more general than the choice where the mode of a receive must match the mode of thesend. 7

Table 3: Non-blocking receiveUser MPI Program MPI implementation DeviceMPI_irecv check unexpected queue(suppose not found)A_alloc_recv_handleset �elds, particularly\non-blocking"A_post_recv calls devicelayer to start receiveoperation posts receive at device levelreturn(user code) : : : : : :(message arrives, interruptcalls device)D_msg_arrived returnsstatus of \posted"device transfers data usingD_put_from_contigD_mark_recv_completedmark receive completed inMPI data structuresA_free_recv_handlereturnMPI_status A_check_devicecheck MPI data structuresfor statusreturnMPI_wait (waiting on a particularreceive could transfercontrol to device layer usingA_complete_recv) (couldpoll)return
8

available (see the discussion of the unexpected message queue below), themessage may be received and the
ag is_complete set to true to indicatethat.When the API requires the receive to be completed, it calls the macroA_complete_recv(Request *r, Status *status). The ADI does not re- this is a changefrom the imple-mentation thathas no statusturn from this call until the receive has completed and the data is availablefor the API and the user. The ADI must serve any other requests thatarrive while waiting to complete the speci�ed request. The data in statuscontains the tag, source, and length of the message in bytes.When the API is done with a receive Request, it must tell the ADI tofree the dev_rhandle with the macro A_free_recv_handle(Request *r).The API is allowed to use the same Request more than once as long asonly one requested is posted and not completed at any time.2.3.1 Status of posted Receivesstill need some code on test and cancelCancel (note that cancel must a�ect the queues as well, and may involvesome communication)Probing for a message is discussed in Section 2.6.2.4 Send-ReceiveWe should add this as an option...Many devices can send and receive data simultaneously, and many al-gorithms, particularly data-parallel ones, can be arranged to take advan-tage of this. We allow a send and receive to be speci�ed with macroA_execute_send_recv(Request *rcv, Request *snd, Status *status).However, we do not require that the ADI support this operation. Rather,if the device can not support this, it does not de�ne A_execute_send_recv.The API is then required to submit separate send and receive requests. Forexample, the code in the API might look like:... code to build send and receive Requests#ifdef A_execute_send_recvA_execute_send_recv(snd, rcv, &status);#elseA_post_recv(rcv);A_post_send(snd);A_complete_send(snd);A_complete_recv(rcv, &status);#endif 9

A_free_send_handle(snd);A_free_recv_handle(rcv);This (simultaneous send and receive) is our �rst example of an optionalfunctionality that the ADI can provide. We have made it the responsibilityof the API to provide the functionality when the ADI does not in order tokeep the ADI simpler and smaller.2.5 Data transferTransfering data from the API through the ADI to another process is acritical part of any device interface design. Unless great care is taken, aninterface may require that data be copied several times before being dis-patched or received. In addition, the user's data may not occupy contiguouslocations in memory; any full-featured API (such as MPI) will provide away for the user to specify how the data is laid out and the ADI and APItogether must arrange to move it e�ciently.In describing the data transfer functions, we �rst describe those thatrelate to contiguous data. We require only that the ADI handle contiguousdata but we make provisions for ADIs that can handle more elaborate datalayouts. However, our interface is designed so that data that is noncon-tiguous in the API can be transferred by providing the ADI with contiguousdata. The design is complicated by the fact that we are striving to eliminateunnecessary memory motion; this requires several di�erent ways of movingdata between the API and the ADI.The API is required to decompose any complex data layouts into layoutsthat the ADI can manage. The ADI may need to make multiple calls to theAPI to transfer data in this case. The ADI should attempt to minimize thenumber of transfers, and, where possible, do them directly without usingthe transfer routines provided by the API.2.5.1 Transfers from the ADIWhen a message is received, the ADI must transfer the data to the API inthe location that the API user has speci�ed. There are several ways to dothis; the best choice depends on the exact situation. The easiest is for theADI to simply use the known location of the destination data and for theADI to transfer the data directly. If, for example, the data is contiguous,then before the receive is posted, the macro A_set_recv_contig_buffer(Request *r, void *buf, int len) can be called to set the location intowhich the data should be stored. Here, buf is the user's bu�er locationand len is the length in bytes. The ADI then can use this information to This needs to beADDEDto the implemen-tation (the macroonly; the code al-ready does this)transfer the data into the user's program.A more general interface that is capable of handling arbitrary data lay-outs is provided by having the ADI ask the API to perform the actual10

transfers. This allows the API to provide arbitarily complex datatypeswithout requiring the ADI to handle them. Four macros implement thisinterface. The �rst, D_put_totallen(Request *r, int len), tells theAPI the total length of the message in bytes (as a contiguous message).D_put_totallen must be called before any other macro in this section.Transfers are accomplished with either D_put_from_contig(Request *r,void *buffer, int len), which provides len bytes starting at buffer, orwith D_put_into_contig(Request *r, (void **)buf, int len, int *ac-tual_len), which provides to the ADI a bu�er buf of length actual_len;len is the requested length of the bu�er. The ADI can use either of thesefunctions as it �nds appropriate. The value of actual_len may be lessthen the requested amount; in this case, the ADI must make repeated callsto transfer the entire message to the API (for example, the API may beusing a �xed-length intermediate bu�er). The API is not required to ac-cept the entire message available in one call. Note that this design requiresthe API to keep track of where the API is in a transfer. The �nal macro,D_mark_recv_completed(Request *r), is used to indicate that the ADIhas completed any data transfers. After this point, the API should free itsRequest structure as well as using A_free_handle(A_RHANDLE r) to releasethe ADI's handle.For example, if the ADI reads packets of a �xed length, then the codefor processing data to the API might look something likeD_put_totallen(rcv, pkt.totallen);while (data_to_read)read packet into mybufD_put_from_contig(rcv, mybuf, pkt.len)D_mark_recv_completed(rcv);However, say the that the ADI reads a packet of �xed length, and ifthe message is long, a single additional packet of variable length. Furtherassume that the API prefers to copy from contiguous data to the �nal datalayout. In this case, the code might look something likeD_put_totallen(rcv, pkt.totallen);D_put_from_contig(rcv, mybuf, pkt.len);len = pkt.len;while (pkt.totallen > len) {D_put_into_contig(rcv, &mybuf2,pkt.totallen - pkt.len, &actual_len);len += actual_len;read rest of message into mybuf2}D_mark_recv_completed(rcv);This interface allows the API to provide any intermediate space for holdingmessages, and to pick the size of those bu�ers. Larger bu�ers will probably11

provide better performance, but the bu�ers need not limit the size of messagethat can be received.An alternative mechanism for the ADI to provide the data to the API isto have the ADI hand the API a contiguous bu�er that the API unpacks asrequired. This allows the ADI to deliver the message without any furtherexchanges with the API; this may be important if the ADI runs in a separateprocess and a context switch is needed every time control is exchanged be-tween the ADI and API. If the ADI prefers this mode of operation, it shouldde�ne A_RETURN_PACKED. In this case, the API should allocate a bu�er intowhich the message data can be placed by the ADI when the message arrives.2.5.2 Transfers to the ADITransfers to the ADI are similar to those from the ADI. Just as for the receivecase, the simplest method is for the API to use A_set_send_contig_buffer(Request *r, void *buf, int len) to set the location from which datashould be read. Here, buf is the user's bu�er location and len is the lengthin bytes. This needs to beADDEDto the implemen-tation (the macroonly; the code al-ready does thisThe general interface uses routines that are the natural counterparts ofthe receive routines. The macro D_get_totallen(Request *r, int *len), gets the length, in bytes, of the message for the ADI. This must becalled before any of the other macros described in this section (it willprobably also initialize some bu�ers). Transfers are accomplished witheither D_get_into_contig(Request *r, void *buffer, int len), whichtells the API to transfer len bytes to the bu�er starting at buffer, or withD_get_from_contig(Request *r, (void **)buf, int len, int *actual_len), which provides to the ADI a bu�er buf of length actual_len; len is therequested length of the bu�er. The ADI can use either of these functions asit �nds appropriate. These transfer contiguous chunks of memory from theAPI to the ADI. The value of actual_len may be less then the requestedamount; in this case, the ADI must make repeated calls to get the entiremessage. In the case of D_get_from_contig, a value for len of -1 requeststhe API to make as much data available as possible; the actual amountshould be returned in actual_len. The API is not required to make theentire message available in one call even if the value of len is -1. Note thatthis design requires the API to keep track of where the API is in a transfer.The �nal macro, D_mark_send_completed(Request *r), is used to in-dicate that the ADI has completed any data transfers. After this point,the API should free its Request structure as well as using A_free_handle(A_SHANDLE s) to release the ADI's handle.An alternative mechanism for the API to provide the data to the ADIis to prepack the data into a contiguous bu�er. This allows the ADI tosend the message without any further exchanges with the API; this maybe important if the ADI runs in a separate process and a context switch isneeded every time control is exchanged between the ADI and API. If the12

ADI prefers this mode of operation, it should de�ne A_PACK_IN_ADVANCE.2.5.3 Noncontiguous dataAn ADI that can directly handle more general layouts of data can provide en-hanced performance, particularly on high-performance systems where datacan be moved between processors at rates similar to the rate that data canbe moved to and from local memory. Our ADI design allows an ADI to pro-vide this functionality, and for the API to adapt itself to the ADI. An ADIthat can handle more sophisticated datatypes should de�ne the appropriatemacros described in Table 4. These let the API know which datatype theADI can handle directly.Still to be described: getting information about the datatypesOptional:� Copy to/from non-contiguous bu�er{ Vector (strided){ Blocked (IOVEC){ Hindexed{ MPI datatypes� Provide non-contiguous bu�er pointerTo handle non-contiguous data, the ADI needs to know the layout ofthe data and the size of each element; for heterogeneous systems, it mustalso know the datatype. This data is provided in the datatype �eld of theRequest.need more on unpacking the datatype �eldMPI_PACK and MPI_UNPACK analogues as D routines. Useof source packing?If the datatype is too complicated for the ADI (for example, it is a com-plex structure), the the API can force the ADI to use the D_get_from_contiget.al. routines.2.6 Message queueingIn a message passing system, there are two queues: pending receives andunexpected messages (ones that have been delivered, at least in part, butfor which the API has not yet issued a matching receive). Both the APIand the ADI interact with these queues. For example, when the API issuesa nonblocking receive, this adds an element to the posted receive queue.When the ADI receives a message that matches this posted receive, the13

Table 4: Macros for asserting that the device can handle additionaldatatypesMacro MeaningA_DEVICE_DOES_STRIDED Indicates that the device can handle MPI\vector" type.A_DEVICE_DOES_HINDEXED Indicates that the device can handle MPI\hindex" type.A_DEVICE_DOES_ABSTRACT Indicates that the device can handle the ab-stract data types as described in the MPI sub-set (no recursive datatype de�nitions).ADI must modify that entry in the posted-receive queue to mark that themessage has been received. Because the ADI may operate asynchronously(for example, as the result of an interrupt), great care must be taken toensure that the ADI and API do not attempt inconsistent modi�cations tothe queues. There are a number of solutions to this problem, including theuse of critical sections and multiple queues; the solution that we have chosenis to give the ADI sole responsibility for the queues. In other words, whenthe API needs to investigate any of the queues, it asks the ADI to do sofor it. The ADI is then responsible for ensuring that all operations on thequeues are safe. Since most basic message-passing devices do not provideany queue management, we provide a suite of routines that can be used toprovide the required functions. All that the ADI implementor must do is toensure that the ADI implement a critical section around queue accesses ifthe ADI operates asynchronously.There are really two kinds of queues; one for posted receives and one forunexpected recieves (that is messages that have arrived for which there isno posted receive).The rest of this section describes routines that the ADI may choose touse in implementing the message queues. Since only the ADI may call these,it need not use these. However, the discussion of these routines is a clearway to describe the sort of message queue services that the ADI needs tosupport, and to explain why we have the ADI perform all queue services.Messages are added to the receive queue by the ADI with the routineMPIR_enqueue(Queue *queue, Request *r) and removed with MPIR_dequeue(Queue *queue, Request *r).The unexpected-receive queue is a special case because the ADI adds ele-ments to this queue without notifying the API. Before a receive can be addedto the posted receive queue, the ADI must check to see if that receive matchesan already received message by using the routine MPIR_search_unexpected_queue(int source, int tag, int context_id, int *found, int remove, Request**rcv). 14

The macro D_msg_arrived(int from, int tag, int context_id, Re-quest **rcv, int *is_posted) is called by the ADI when a message ar-rives; this searches �rst the posted receive queue, and, if not found, insertsthe message into the unexpected queue. The two operations are done to-gether to ensure that there can be no race condition caused by the APIposting the receive after the ADI checks the posted queue but before plac-ing the message into the unexpected queue. A Request object is alwaysreturned; the value of the
ag is_posted indicates whether the item was onthe posted receive queue of was inserted into the unexpected receive queue.If the message was not posted, then the API is responsible for allocat-ing a Request and returning a pointer to it in rcv. When a matchingreceive is �nally posted and the ADI �nds it in the unexpected queue (withMPIR_search_unexpected_queue, the ADI will need to cause the Requestto be free. It does this with the macro D_free_unexpected(Request *rcv). The API is encouraged to make this locally executable; that is, this macroshould simply set a
ag to indicate that this Request should be freed later.Of course, the API can de�ne D_free_unexpected to immediately free theRequest.2.7 Checking the queuesMany message-passing APIs provide a way to see if a message is alreadyavailable to be received, and to provide some information about that mes-sage. This is called probing and consists of checking the unexpected receivequeue to see if a message with the speci�ed matching criteria is available. Asuccessful probe returns the length of the message, and the values of the tagand source (in case these were unspeci�ed). Since probing is often used toallow a user program to receive a message of unknown length, a successfulprobe, followed by a receive with the same criteria, must return the samemessage. This constrains the implementations of the unexpected receivequeue.There are two kinds of probes: blocking and nonblocking. A blockingprobe does not return until a message that matches the speci�ed conditionsis received; a nonblocking probe returns immediately and indicates whether amatching message is available. A nonblocking probe is made with the macroA_iprobe(int tag, int source, int context_id, int *found, Status *sta-tus). The �rst three arguments have the same meaning as the entries inthe Request structure shown in Table 1. The found argument is set to 1 isa message exists and 0 otherwise. If a message is found, then status is setto contain the tag, source, and size in bytes of the message.A blocking probe is made with the macro A_probe(int tag, int source,int context_id, Status *status). The arguments have the same mean-ing as for A_iprobe. One implementation of A_probe isdo { 15

A_iprobe(tag, source, context_id, &found, &status);} while (!found);This implementation can be ine�cient, since it causes the API to makea large number of calls to the ADI. The ADI implementation of A_probeshould take advantage of the fact that the API is waiting for a successfulprobe by itself waiting for a message to arrive, yielding the CPU to otherprocesses until a message arrives.2.7.1 Rationale for Queue operationsAn earlier speci�cation of the ADI allowed both the API and ADI to insertand remove elements from the queues. While this system works well whenthe API and ADI execute in a single thread (without interrupt handlers),it is hard to avoid race conditions when they operate in separate threads.While the race conditions can be handled with the classical techniques ofcritical sections, the implementation of these can have a signi�cant impacton the performance of the ADI. We choose to give the ADI sole control ofthe queues because it needs to be noti�ed when any element is added orremoved to the queue and thus little is saved by allowing the API to searchthe queues directly.2.8 Execution environmentThis section covers all of the odds and ends that are needed to round outthe ADI de�nition. They cover both initializing the ADI and some servicesthat are not strictly message passing but which the ADI may be in the bestposition to o�er.2.8.1 Controlling the ADIBefore any other ADI calls can be made, the ADI must be �rst started byusing the macro A_INIT(int *argc, char **argv). The arguments argcis a pointer to the number of command-line arguments and argv containsthe actual command-line arguments in the usual C language format. TheADI may use some of these arguments to control its operation.The A_INIT routine initializes the ADI. It is not required to start upprocesses or otherwise load the parallel application itself, though it may doso. When a program is ready to terminate normally, it should call the macroA_END(). The ADI should return from this call; this is simply provided toallow the ADI to release any resources that it may have allocated, and toprovide any additional services (such as informing the user of messages sentbut not received or received into the unexpected queue but never received16

by the API). The default behavior of A_END should be to produce no outputat all.An abnormal termination is achieved by calling the macro A_ABORT(code). This should terminate the program and all processes associatedwith it; where possible, it should have the e�ect of an abort(code).2.8.2 InformationThe macro A_mysize(int *size) returns the number of processes in theparallel program. The macro A_myrank(int *rank) returns the rank ofthe calling process; this rank is in the range 0; : : : ; size� 1.The rest of the routines in this section are motivated by MPI; any im-plementation of MPI must provide these features; they are often system-speci�c, and need to be placed in some system-speci�c part of the imple-mentation. We have chosen to combine all of these functions into the ADI inorder to make the ADI the only code that contains system-speci�c code toport when moving a message-passing system such as MPI to a new system.The macro A_NODE_NAME(char *name, int max_len) returns the nameof the processor in name, a bu�er of length max_len. This name should allowthe identi�cation of a particular piece of hardware.In addition, the ADI should provide two routines to support a local timeon each processor. The macro A_WTIME() should return, as a double value,the time in seconds since some event. This event is unspeci�ed other thanto say that it is �xed during the lifetime of the program. For example, theevent can be a calendar time, such as January 1, 1970, or the time when theprocess started. There is no speci�ed relationship to the values returned byA_WTIME on other processors.The macro A_WTICK() returns the resolution of A_WTIME, also in seconds.The macro A_tag_range(int *high) returns in high the maximumvalue of tag that the ADI provides. It is expected that most ADI implemen-tations will provide 31 or 32 bits of tag; however, an implementation mayprovide fewer in exchange for greater e�ciency. Note that MPI mandates atag range of at least 2^15� 1.The macro A_machine_name(char *str, int max_len) provides themane of the processor running the calling task. This should identify a par-ticular piece of hardware. The macro A_MAX_MACHINE_NAME_LEN gives themaximum number of characters that may be required for A_machine_name.2.8.3 Error handlingneed to add here an error-handling interface and some defaultbehaviors 17

2.9 Miscellaneoustalk about polled versus interupt-driven devices. Note that maywant both depending on the environmentIf the device can operate concurrently with the user code; in particu-lar, if the device and the user code could access the same data structuresasynchronously, then the device must assert A_DEVICE_IS_ASYNCHRONOUS.Often, the API may need the ADI to perform an operation before it cancontinue; for example, completing the receipt of some message. The macroA_check_device(int blocking) allows the API to ask the ADI to checkto see if the ADI has any work to do. If blocking is false, the ADI willreturn once there are no operations to perform. If blocking is true, thenthe ADI will not return until some event happens (for example, a messagearrives). The ADI is free to de�ne what events will cause A_check_deviceto return when called with blocking true.3 SummaryThese have yet to be updatedNote how small this set of routines/macros is.In the �le `Datomic.h':nothing?In the �le `A.h':typedef ... A_send_handletypedef ... A_recv_handleA_alloc_send_handle(D_send_handle)A_alloc_recv_handle(D_recv_handle)A_free_send_handle(D_send_handle)A_free_recv_handle(D_recv_handle)A_post_send(D_send_handle)A_post_recv(D_recv_handle)A_complete_recv(D_recv_handle)A_check_device(blocking)In the �le `D.h':typedef ... D_send_handletypedef ... D_recv_handleD_mark_send_completed(D_handle)18

D_message_arrived(src, tag, context_id,D_recv_handle, status)D_get_contig(D_send_handle, address, maxlen, actual_len)D_put_contig(D_recv_handle, address, maxlen, actual_len)D_mark_send_completed(D_send_handle)D_mark_recv_completed(D_recv_handle)D_check_mpi4 Example ScenariosThis section contains several examples of sequences of events and calls hap-pening at the user, API, and device layer. It is assumed that the API layerhas its own data structures consisting of handles to represent posted sendand receive operations, and an \unexpected queue" to hold messages thatarrive without posted receives for them. This set of examples is still incom-plete, but the other sequences of events should not be di�cult to infer fromthese. Also, these scenarios show only one possible implementation (whichassumes that we can interrupt user code when the device wants service).We will use MPI as the API in these examples.we need more discussionadd an alternate to 3: preposted nonblocking receive with no in-terrupts of user process5 Comments on implementation5.1 Packet oriented devicesThe device can copy directly from user space into the message packet'spayload area. If the packet is formed by writing to a device FIFO, then thedata may be transferred directly to that location.5.2 Active messages and remote copyActive messages may be used to communicate tag, source, and context in-formation about a message. Once a message is ready to be receive, it can bemoved with remote copy. On machines with hardware support for remotecopy, this can allow very fast communication.5.3 Devices with local queuesA smart device may maintain its own queues of posted sends, receives andunexpected messages. This allows the device to reduce the number of times19

Table 5: Blocking receiveUser MPI Program MPI implementation DeviceMPI_recv check unexpected queue(suppose not found)A_alloc_recv_handleset �elds, particularly\blocking"A_post_recvcalls device layer to start re-ceive operation posts receive at device level(waits, handles otherrequests)(message arrives)D_msg_arrived returnsstatus of \posted"device transfers data usingD_put_from_contigD_mark_recv_completedtransfer status info to userstatus objectA_free_recv_handlereturn
20

Table 6: Message arrives; receive is posted laterUser MPI Program MPI implementation Device(message arrives)D_msg_arrived calledA_alloc_recv_handle inunexpected queue D_msg_arrived returnsstatus of \not posted"Device may transfer messageinto unexpected queue at thispoint, or it may defer datatransfer (to bu�er on sender,for example). Assume itdefers.: : : : : :MPI_irecv checks unexpected queue;�nds messageA_complete_recv device fetches messages,transfers into user space withD_put_contigMPI_status D_put_from_contigreturn \not completed" D_mark_recv_completedMPI_status return \completed"
21

Table 7: Chameleon routines used by sample device implementationRoutine ActionPIbsend Blocking sendPIbrecv Blocking receivePInsend Nonblocking sendPInrecv Nonblocking receivePIwsend Wait for nonblocking sendPIwrecv Wait for nonblocking receivePInprobe Non-blocking probe by tagPImytid Rank of calling taskPInumtids Number of tasks in parallel programPIiInit Start a Chameleon programPIiFinish End a Chameleon programthat the device interrupts the user's process when handling messages. Ourdesign allows for this by allowing the API to post a receive to the device. Thedevice may than handle a message that matches a posted receive (providedthat it can store the message) without interrupting the user's process. TheAPI discovers that the message has been handled when the user processrequests that the message be completed (by calling A_complete_recv) orperhaps by looking at the message completed
ag (set when the device calledD_mark_recv_completed).In order for this to work, the device needs to have access to the locationof the destination bu�er when A_post_recv is called.6 A Portable ImplementationIn this section we show a complete implementation of the device code interms of an existing message-passing system of the abstract device interface.The code is available, with the MPI API, from info.mcs.anl.gov in �le`pub/mpi/mpich.tar.Z'.This code uses Chameleon [?] for the message-passing calls. Chameleonis a portable message-passing system that is allows the use of many populartransport layers, including p4, PVM, Intel NX, and IBM's EUI. Only a smallset of calls is used; these are described in Table 7.It is interesting that we can specify a portable ADI with good perfor-mance. what more do wewant to say?For the sake of concreteness, we propose three �les:Datom.h A set of de�nitions of the MPI \atomic" datatypes. Many ofthese may be enum types. 22

A.h A set of macros (both data structures and operations) that the MPIimplementation (the API layer) will rely on. Their de�nitions are tobe provided by the device.D.h A set of macros that the device will invoke to interact with the MPIimplementation. Their de�nitions will be provided by the MPI imple-mentation.This device implementation maps all messages into messages with tagzero (for the �rst A_PACKET_SIZE bytes) and with tag source+1 for anypart of a message that is longer.An alternate implementation would use tags from zero to 2^31� (1+ p)(for p processors) for any message in the initial communicator/context andtag value between 0 and 2^31 � (1 + p) and the above tag mapping forall other messages. This gives an implementation where existing message-passing programs would run with little if any overhead, since they wouldmap directly to the underlying message-passing system. We have not im-plemented this since it discourages the use of contexts and gives an arti�cialperformance advantage to \old-style" message-passing programs. We be-lieve that native implementations to the abstract device interface will su�eronly an insigni�cant performance impact, speci�cally, the cost of sending thecontext id and including the context id in the message matching criteria.References

23

